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Abstract

In this talk, I will introduce Cryptology, which is the

foundation of Information Security. I will emphasize the

gap between the theory and implementation of

cryptosystems. I will also talk about digital signature

which is very important in the processing of official

digital documents. Finally, I will introduce quantum

cryptography, which is important if attackers have

quantum computers.
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Cryptology and Information Security

A sender S wants to send a message m to a receiver R by using

a public channel.

S
m

=⇒=⇒=⇒ R

An eavesdropper may learn the secret m.

S
m−→ Eke(m)

c
=⇒ Dkd(c)

m−→ R

Dkd(Eke(m)) = m
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Introduction to Cryptology and Information
Security

Cryptography is the study of mathematical techniques related

to aspects of information security such as:

1. Confidentiality, (Secrecy, or Privacy)

2. Data integrity

3. System Availability

4. Entity identification

5. Data authentication

6. Non-repudiation
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The Goal of Information Security

Provide a system which can function properly, even if there are

malicious users.

1. Can we design a secure system?

2. Can we prove that a system is secure?
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The Gap between Theory and Implementation

The theory of modern cryptography is based on mathematics,

algorithm and computational complexity.

In this talk, I will not emphasize on the theory of cryptography.

I will discuss more on the gap between the theory and

implementation of cryptosystems.
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Symmetric Key Cryptosystems

1. Traditional Cryptosystems

shift cipher, substitution cipher, Vigenere Cipher, . . .

2. Modern Cryptosystems

(a) Block cipher: DES, AES, . . .

(b) Stream cipher: linear feedback shift register, . . .

6



Symmetric Key Cryptosystems

Implementation: efficiency

Key selection:

1. Low entropy: passwords

2. High entropy: hash of passwords
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Information Entropy

Entropy is a measure of uncertainty.

“Compress then encrypt” or “encrypt then compress” ?
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Public Key Cryptosystems

A
x

=⇒ B

• Key generation

1. B randomly chooses two large distinct primes p and q,

(e. g. p, q > 21024).

2. B computes n = p · q and φ(n) = (p− 1)(q − 1).

3. B randomly chooses e, gcd(e, φ(n)) = 1.

4. B computes d ≡ e−1 mod φ(n).

5. B sends (n, e) to A.
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Public Key Cryptosystems

• Encryption

1. A computes y = xe mod n.

2. A sends y to B.

• Decryption

1. B computes x = yd mod n.
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Security of RSA

1. If n can be factored efficiently, then RSA cryptosystems is

not secure.

2. If d or e is too small, then RSA cryptosystems is not secure,

even if n is very large.

3. Generate different set of keys (n, e0, d0) and (n, e1, d1) with

the same modulus n is not secure.
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Factoring Large Integers

1. If φ(n)= (p− 1)(q − 1) is known, then n can be factored.

2. If |p− q| is small, e. g. |p− q| < 4√n, then n can be factored.

3. If every prime power factor of p− 1 is small, then n can be

factored.

4. If every prime power factor of p+ 1 is small, then n can be

factored.

5. If every prime power factor of p+ 1± 2
√
p is small, then n

can be factored.
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Factoring Large Integers

RSA Number digits bits Factored on
RSA-100 100 330 1991/04/01
RSA-110 110 364 1992/04/14
RSA-120 120 397 1993/06/09
RSA-129 129 426 1994/04/26
RSA-130 130 430 1996/04/10
RSA-140 140 463 1999/02/02
RSA-150 150 496 2004/04/16
RSA-155 155 512 1999/08/22
RSA-160 160 530 2003/04/01
RSA-170 170 563 2009/12/29
RSA-576 174 576 2003/12/03
RSA-180 180 596 2010/05/08
RSA-640 193 640 2005/11/02
RSA-200 200 663 2005/05/09
RSA-768 232 768 2009/12/12
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How to Select Primes in RSA

Randomly select large primes of the same size.

Random?

1. pseudo-random number generators: random()

2. /dev/urandom files

3. quantum devices
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More on RSA Cryptosystem and Factoring

Theorem 1 If the secret key (d) can be computed from the

public key (e and n) efficiently, then n can be factored

efficiently.

Is breaking RSA cryptosystem equivalent to factor n?
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Other Public-key Cryptosystems

1. Based on Discrete Logarithm Problem

ElGamal Cryptosystem

2. Use groups defined by elliptic curves

3. Based on solving shortest non-zero vector in a lattice

4. Based on error correction code

5. Based on composition of multivariate functions

6. Based on quantum information
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Elliptic Curve Cryptography

1. There is no known adaptation of the index calculus method

to the discrete logarithm problem on elliptic curves.

2. It is believed that a cyclic subgroup of an elliptic curve of

size 160 bits will provide the same security strength as a

cryptosystem based on Zn with 512-bit n.

The hardest ECC discrete logarithm problem broken to date

had a 112-bit key for the prime field case and a 109-bit key for

the binary field case.

Note that some elliptic curves do have index-calculus-like

method for solving the discrete logarithm problem.
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Bilinear Mapping

Bilinear functions can be constructed by the using additive

groups based on elliptic curves.

e(αx+ βy) = e(x+ y)αβ
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Digital Signature

RSA digital signature scheme: A signs a message m.

1. Key generation

(a) A randomly chooses two large distinct primes p and q,

(e. g. p, q > 21024).

(b) A computes n = p · q and φ(n) = (p− 1)(q − 1).

(c) A randomly chooses e, gcd(e, φ(n)) = 1.

(d) A computes d ≡ e−1 mod φ(n).

(e) A announces (n, e).
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Digital Signature

1. Compute Signature

(a) B computes the signature of m: y = xd mod n.

2. Verify

(a) Given (x, y), everyone can verify the signature by testing

if x ≡ ye (mod n) or not.
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Hash Function

A cryptographic hash function h is a function from domain A

to range B which is easy to compute and hard to invert.

h : A→ B

The domain A is usually much larger than the range B.

1. Given x, it is easy to compute h(x).

2. Given y, it is hard to find x, h(x) = y.

3. Given x1, it is hard to find x2, x2 6= x1 but h(x1) = h(x2).

4. It is hard to find x1 and x2, x1 6= x2, but h(x1) = h(x2).
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Hash Function

To encrypt a large file, it is required to divide the file into small

blocks, and encrypt each block.

To sign a large document, we first hash the document, and

then sign the hash of the document.

Hash functions: MD5, SHA1, SHA2, SHA3, . . .
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Security of Hash Functions

1. Birthday attack

2. Wang et al. found collisions for some hash functions.
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Quantum Information and Post Quantum
Cryptography

In 1982 Richard Feynman observed that certain quantum

mechanical effects cannot be simulated efficiently on a

traditional computer.

It is speculated that computations may be done more efficiently

by using these quantum effects, including superposition and

entanglement.
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Quantum computing models

1. In 1980 Benioff introduced a quantum Turing machine

model.

2. In 1989 Deutch proposed the quantum circuit model.

3. In 1993 Yao showed that the uniform quantum circuit

model of computation is equivalent to the quantum Turing

machine model.
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Quantum Computers

Quantum computers make direct use of quantum-mechanical

phenomena, such as superposition and entanglement, to

perform operations on data.

In 2001, researchers demonstrated Shor’s algorithm to factor

15 using a 7-qubit NMR computer.

In 2011, researchers at the University of Bristol created an

all-bulk optics system that ran a version of Shor’s algorithm to

successfully factor 21.
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Classical bits and Quantum Bits

classical bits:

0, 1

quantum bits, qubit: a superposition of |0〉 and |1〉

α|0〉+ β|1〉,
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Representation of Qubits

Let |0〉 and |1〉 be a basis of the Hilbert space H.

Elements of H is usually denoted by

α|0〉+ β|1〉,

where α and β are complex numbers with

|α|2 + |β|2 = 1.

When measured with {|0〉, |1〉},

1. the probability of obtaining |0〉 is |α|2, and

2. the probability of obtaining |1〉 is |β|2.
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Properties of Qubits

1. Infinite many information can be represented by a qubit.

2. However, when measured, it will give only one bit of

information, either 0 or 1.

3. After measurement, the qubit will change its superposition

state to either |0〉 or |1〉, depending on the outcome of the

measurement.

4. It is impossible to examine a qubit to determine its quantum

state. (Only if infinite many identical qubits are measured

would one be able to determine the values of α and β.)
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Efficient Quantum Algorithms

• (1992) Deutsch-Jozsa’s algorithm for testing whether a

Boolean function is constant or balanced needs only 1

evaluation of the function.

A classical algorithm needs 2n−1 + 1 evaluations of the

function.

• (1997) Bernstein-Vazirani’s algorithm for determining the

value of a ∈ Zn2 in fa(x) = a · x needs only 1 evaluation of

the function.

A classical algorithm needs n evaluations of the function.

• (1994) Simon’s algorithm for determining the period of a

function f : Zn2 7→ Zn2 needs only O(n) (expected) evaluation

of the function.

A classical algorithm needs 2n evaluations of the function.
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Efficient Quantum Algorithms

• (1994) Peter Shor’s integer factorization algorithm runs in

O(log3 n) time.

The best-known classical algorithm needs

O

(
e(64/9)(logn)1/3(log logn)2/3

)
time.

• (1995) Lov Grover’s search algorithm needs only
√
n

queries.

Traditional algorithm needs n queries.
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Post Quantum Cryptography

1. Based on Factoring: RSA

2. Based on Discrete Logarithm Problem: ElGamal

3. Use groups defined by elliptic curves

4. Based on solving shortest non-zero vector in a lattice

5. Based on error correction code

6. Based on composition of multivariate functions

7. Based on quantum information
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Quantum Entanglement

Let Q1,Q2, . . . ,Qn be quantum systems with underlying Hilbert

spaces H1,H2 . . . ,Hn, respectively.

The global quantum system Q is entangled if its state

|φ〉 ∈ H =
n⊗

j=1

Hj

cannot be written in the form

|φ〉 =
n⊗

j=1

|φj〉
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An Example of Entanglement
1√
2

(|00〉+ |11〉) 6= |φ〉 ⊗ |ϕ〉 for any |φ〉 and any |ϕ〉.

(α|0〉+ β|1〉)⊗ (α′|0〉+ β′|1〉) =

(αα′|00〉+ αβ′|01〉+ βα′|10〉+ ββ′|11〉)
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Entanglement

1. The measurement outcome of entangled qubits are

correlated.

2. Entanglement is defined only for pure ensembles,

entanglement for mixed ensembles has not been well

understood yet.
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Quantum Cryptography

1. If the eavesdropper measured the quantum bits, there is a

high probability that it will be detected.

2. In 1984, Charles Bennett and Gilles Brassard proposed a

quantum key distribution protocol which has been shown to

be unconditionally secure.

3. All quantum computations are reversible, some

cryptographic primitives, such as two-party secure

computation, have been shown to be impossible in quantum

settings without additional assumptions.
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Thank You
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