Cryptology and Information Security—Theory and Practice

D. J. Guan

Department of Computer Science National Sun Yat-Sen University guan@cse.nsysu.edu.tw

April 14, 2016

Abstract

In this talk, I will introduce Cryptology, which is the foundation of Information Security. I will emphasize the gap between the theory and implementation of cryptosystems. I will also talk about digital signature which is very important in the processing of official digital documents. Finally, I will introduce quantum cryptography, which is important if attackers have quantum computers.

Contents

- 1. Cryptology and Information Security
- 2. Symmetric key Cryptosystems
- 3. Public Key Cryptosystems
- 4. Digital Signature
- 5. Hash Function
- 6. Quantum and Post Quantum Cryptography

Cryptology and Information Security

A sender S wants to send a message m to a receiver R by using a public channel.

$$S \Longrightarrow \stackrel{m}{\Longrightarrow} \Longrightarrow R$$

An eavesdropper may learn the secret m.

$$S \xrightarrow{m} E_{k_e}(m) \xrightarrow{c} D_{k_d}(c) \xrightarrow{m} R$$

$$D_{k_d}(E_{k_e}(m)) = m$$

Introduction to Cryptology and Information Security

Cryptography is the study of mathematical techniques related to aspects of information security such as:

- 1. Confidentiality, (Secrecy, or Privacy)
- 2. Data integrity
- 3. System Availability
- 4. Entity identification
- 5. Data authentication
- 6. Non-repudiation

The Goal of Information Security

Provide a system which can function properly, even if there are malicious users.

- 1. Can we design a secure system?
- 2. Can we prove that a system is secure?

The Gap between Theory and Implementation

The theory of modern cryptography is based on mathematics, algorithm and computational complexity.

In this talk, I will not emphasize on the theory of cryptography. I will discuss more on the gap between the theory and implementation of cryptosystems.

Symmetric Key Cryptosystems

- 1. Traditional Cryptosystems shift cipher, substitution cipher, Vigenere Cipher, ...
- 2. Modern Cryptosystems
 - (a) Block cipher: DES, AES, ...
 - (b) Stream cipher: linear feedback shift register, ...

Symmetric Key Cryptosystems

Implementation: efficiency

Key selection:

- 1. Low entropy: passwords
- 2. High entropy: hash of passwords

Information Entropy

Entropy is a measure of uncertainty.

"Compress then encrypt" or "encrypt then compress" ?

Public Key Cryptosystems

$$A \xrightarrow{x} B$$

- Key generation
 - 1. B randomly chooses two large distinct primes p and q, (e. g. $p, q > 2^{1024}$).
 - 2. B computes $n = p \cdot q$ and $\phi(n) = (p-1)(q-1)$.
 - 3. B randomly chooses e, $gcd(e, \phi(n)) = 1$.
 - 4. B computes $d \equiv e^{-1} \mod \phi(n)$.
 - 5. B sends (n, e) to A.

Public Key Cryptosystems

- Encryption
 - 1. A computes $y = x^e \mod n$.
 - 2. A sends y to B.
- Decryption
 - 1. B computes $x = y^d \mod n$.

Security of RSA

- 1. If n can be factored efficiently, then RSA cryptosystems is not secure.
- 2. If d or e is too small, then RSA cryptosystems is not secure, even if n is very large.
- 3. Generate different set of keys (n, e_0, d_0) and (n, e_1, d_1) with the same modulus n is not secure.

Factoring Large Integers

- 1. If $\phi(n) = (p-1)(q-1)$ is known, then n can be factored.
- 2. If |p-q| is small, e.g. $|p-q| < \sqrt[4]{n}$, then n can be factored.
- 3. If every prime power factor of p-1 is small, then n can be factored.
- 4. If every prime power factor of p + 1 is small, then n can be factored.
- 5. If every prime power factor of $p + 1 \pm 2\sqrt{p}$ is small, then n can be factored.

Factoring Large Integers

RSA Number	digits	bits	Factored on
RSA-100	100	330	1991/04/01
RSA-110	110	364	1992/04/14
RSA-120	120	397	1993/06/09
RSA-129	129	426	1994/04/26
RSA-130	130	430	1996/04/10
RSA-140	140	463	1999/02/02
RSA-150	150	496	2004/04/16
RSA-155	155	512	1999/08/22
RSA-160	160	530	2003/04/01
RSA-170	170	563	2009/12/29
RSA-576	174	576	2003/12/03
RSA-180	180	596	2010/05/08
RSA-640	193	640	2005/11/02
RSA-200	200	663	2005/05/09
RSA-768	232	768	2009/12/12

How to Select Primes in RSA

Randomly select large primes of the same size.

Random?

- 1. pseudo-random number generators: random()
- 2. /dev/urandom files
- 3. quantum devices

More on RSA Cryptosystem and Factoring

Theorem 1 If the secret key (d) can be computed from the public key (e and n) efficiently, then n can be factored efficiently.

Is breaking RSA cryptosystem equivalent to factor n?

Other Public-key Cryptosystems

- 1. Based on Discrete Logarithm Problem ElGamal Cryptosystem
- 2. Use groups defined by elliptic curves
- 3. Based on solving shortest non-zero vector in a lattice
- 4. Based on error correction code
- 5. Based on composition of multivariate functions
- 6. Based on quantum information

Elliptic Curve Cryptography

- 1. There is no known adaptation of the index calculus method to the discrete logarithm problem on elliptic curves.
- 2. It is believed that a cyclic subgroup of an elliptic curve of size 160 bits will provide the same security strength as a cryptosystem based on \mathbb{Z}_n with 512-bit n.

The hardest ECC discrete logarithm problem broken to date had a 112-bit key for the prime field case and a 109-bit key for the binary field case.

Note that some elliptic curves do have index-calculus-like method for solving the discrete logarithm problem.

Bilinear Mapping

Bilinear functions can be constructed by the using additive groups based on elliptic curves.

$$e(\alpha x + \beta y) = e(x + y)^{\alpha\beta}$$

Digital Signature

RSA digital signature scheme: A signs a message m.

- 1. Key generation
 - (a) A randomly chooses two large distinct primes p and q, (e. g. $p, q > 2^{1024}$).
 - (b) A computes $n = p \cdot q$ and $\phi(n) = (p-1)(q-1)$.
 - (c) A randomly chooses e, $gcd(e, \phi(n)) = 1$.
 - (d) A computes $d \equiv e^{-1} \mod \phi(n)$.
 - (e) A announces (n, e).

Digital Signature

1. Compute Signature

(a) B computes the signature of m: $y = x^d \mod n$.

- 2. Verify
 - (a) Given (x, y), everyone can verify the signature by testing if $x \equiv y^e \pmod{n}$ or not.

Hash Function

A cryptographic hash function h is a function from domain A to range B which is easy to compute and hard to invert.

$$h:A\to B$$

The domain A is usually much larger than the range B.

1. Given x, it is easy to compute h(x).

- 2. Given y, it is hard to find x, h(x) = y.
- 3. Given x_1 , it is hard to find x_2 , $x_2 \neq x_1$ but $h(x_1) = h(x_2)$.
- 4. It is hard to find x_1 and x_2 , $x_1 \neq x_2$, but $h(x_1) = h(x_2)$.

Hash Function

To encrypt a large file, it is required to divide the file into small blocks, and encrypt each block.

To sign a large document, we first hash the document, and then sign the hash of the document.

Hash functions: MD5, SHA1, SHA2, SHA3, ...

Security of Hash Functions

- 1. Birthday attack
- 2. Wang et al. found collisions for some hash functions.

Quantum Information and Post Quantum Cryptography

In 1982 Richard Feynman observed that certain quantum mechanical effects cannot be simulated efficiently on a traditional computer.

It is speculated that computations may be done more efficiently by using these quantum effects, including superposition and entanglement.

Quantum computing models

- 1. In 1980 Benioff introduced a quantum Turing machine model.
- 2. In 1989 Deutch proposed the quantum circuit model.
- 3. In 1993 Yao showed that the *uniform* quantum circuit model of computation is equivalent to the quantum Turing machine model.

Quantum Computers

Quantum computers make direct use of quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data.

In 2001, researchers demonstrated Shor's algorithm to factor 15 using a 7-qubit NMR computer.

In 2011, researchers at the University of Bristol created an all-bulk optics system that ran a version of Shor's algorithm to successfully factor 21.

Classical bits and Quantum Bits

classical bits:

0, 1

quantum bits, qubit: a superposition of $|0\rangle$ and $|1\rangle$

 $\alpha |0\rangle + \beta |1\rangle,$

Representation of Qubits

Let $|0\rangle$ and $|1\rangle$ be a basis of the Hilbert space \mathcal{H} . Elements of \mathcal{H} is usually denoted by

 $\alpha |0\rangle + \beta |1\rangle,$

where α and β are complex numbers with

$$|\alpha|^2 + |\beta|^2 = 1.$$

When measured with $\{|0\rangle,|1\rangle\}\text{,}$

- 1. the probability of obtaining $|0\rangle$ is $|\alpha|^2$, and
- 2. the probability of obtaining $|1\rangle$ is $|\beta|^2$.

Properties of Qubits

- 1. Infinite many information can be represented by a qubit.
- 2. However, when measured, it will give only one bit of information, either 0 or 1.
- 3. After measurement, the qubit will change its superposition state to either $|0\rangle$ or $|1\rangle$, depending on the outcome of the measurement.
- 4. It is impossible to examine a qubit to determine its quantum state. (Only if infinite many identical qubits are measured would one be able to determine the values of α and β .)

Efficient Quantum Algorithms

 (1992) Deutsch-Jozsa's algorithm for testing whether a Boolean function is constant or balanced needs only 1 evaluation of the function.

A classical algorithm needs $2^{n-1} + 1$ evaluations of the function.

• (1997) Bernstein-Vazirani's algorithm for determining the value of $a \in \mathbb{Z}_2^n$ in $f_a(x) = a \cdot x$ needs only 1 evaluation of the function.

A classical algorithm needs n evaluations of the function.

(1994) Simon's algorithm for determining the period of a function f: Zⁿ₂ → Zⁿ₂ needs only O(n) (expected) evaluation of the function.

A classical algorithm needs 2^n evaluations of the function.

Efficient Quantum Algorithms

• (1994) Peter Shor's integer factorization algorithm runs in $O(\log^3 n)$ time.

The best-known classical algorithm needs $O\left(e^{(64/9)(\log n)^{1/3}(\log \log n)^{2/3}}\right)$ time.

• (1995) Lov Grover's search algorithm needs only \sqrt{n} queries.

Traditional algorithm needs n queries.

Post Quantum Cryptography

- 1. Based on Factoring: RSA
- 2. Based on Discrete Logarithm Problem: ElGamal
- 3. Use groups defined by elliptic curves
- 4. Based on solving shortest non-zero vector in a lattice
- 5. Based on error correction code
- 6. Based on composition of multivariate functions
- 7. Based on quantum information

Quantum Entanglement

Let Q_1, Q_2, \ldots, Q_n be quantum systems with underlying Hilbert spaces $\mathcal{H}_1, \mathcal{H}_2 \ldots, \mathcal{H}_n$, respectively.

The global quantum system ${\mathcal Q}$ is entangled if its state

$$|\phi\rangle \in \mathcal{H} = \bigotimes_{j=1}^{n} H_j$$

cannot be written in the form

$$|\phi\rangle = \bigotimes_{j=1}^{n} |\phi_j\rangle$$

An Example of Entanglement

 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \neq |\phi\rangle \otimes |\varphi\rangle \text{ for any } |\phi\rangle \text{ and any } |\varphi\rangle.$

 $(\alpha|0\rangle + \beta|1\rangle) \otimes (\alpha'|0\rangle + \beta'|1\rangle) =$ $(\alpha\alpha'|00\rangle + \alpha\beta'|01\rangle + \beta\alpha'|10\rangle + \beta\beta'|11\rangle)$

Entanglement

- 1. The measurement outcome of entangled qubits are correlated.
- 2. Entanglement is defined only for pure ensembles, entanglement for mixed ensembles has not been well understood yet.

Quantum Cryptography

- 1. If the eavesdropper measured the quantum bits, there is a high probability that it will be detected.
- 2. In 1984, Charles Bennett and Gilles Brassard proposed a quantum key distribution protocol which has been shown to be unconditionally secure.
- 3. All quantum computations are reversible, some cryptographic primitives, such as two-party secure computation, have been shown to be impossible in quantum settings without additional assumptions.

Thank You