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RSA Cryptosystem

was invented by Rivest, Sharmir, and Adleman in

1978.

m: message

c: cipher

Encryption

1. choose n and e;

2. compute c = me mod n;

Decryption

1. compute d, the inverse of e in Z∗φ(n)
d · e ≡ 1 (mod φ(n));

2. compute m = cd mod n;
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Example

n = 143, e = 103

m = 2, c = 2103 mod 143 = 63
m = 3, c = 3103 mod 143 = 16
m = 4, c = 4103 mod 143 = 108
m = 5, c = 5103 mod 143 = 125
m = 6, c = 6103 mod 143 = 7
m = 7, c = 7103 mod 143 = 123

n = 143, φ(143) = 120, e = 103,

103−1 = 7, (103 · 7 ≡ 1 (mod 120)).

c = 63, m = 637 mod 143 = 2
c = 16, m = 167 mod 143 = 3
c = 108, m = 1087 mod 143 = 4
c = 125, m = 1257 mod 143 = 5
c = 7, m = 77 mod 143 = 6
c = 123, m = 1237 mod 143 = 7
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Why RSA Cryptosystem Works?

If (a, n) = 1 then aφ(n) ≡ 1 (mod n).

d · e ≡ 1 (mod φ(n)) ⇒ d · e− 1 is a multiple of

φ(n).

If (m, n) = 1, then

cd mod n = (me)d mod n

= m(ed) mod n

= m(kφ(n)+1) mod n

= m(kφ(n))m mod n

= ((mφ(n))k)m mod n

= m

If (m, n) 6= 1, then ?
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Application of the RSA Cryptosystem

A sends a secrete message to B.

1. B chooses two large primes p and q;

2. B computes n = p · q, and

φ(n) = (p− 1)(q − 1);

3. B chooses e such that (e, φ(n)) = 1;

4. B sends n and e to A;

5. A computes c = me mod n, and sends it to B;

6. B computes d, the inverse of e in Z∗φ(n);

7. B decrypts the message m by computing

m = cd mod n;
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B’s public key: (n, e)

B’s private key: d

Using only the public key n and e, it is

“computationally infeasible” to compute d.

It is “easy” to compute d, if φ(n) is known.
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Another Application of the RSA

A signs a message and sends it to B.

A’s public key: (n, e)

A’s private key: d

1. A computes s = md mod n;

2. A sends m and s to B;

3. B accepts the signature if m = se mod n;
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Yet Another Application of the RSA

A signs a secrete message and sends it to B.

A’s public key: (nA, eA)

A’s private key: dA

B’s public key: (nB, eB)

B’s private key: dB

nA > nB

1. A encrypts the message c = meB mod nB;

2. A computes the signature s = cdA mod nA;

3. A sends c and s to B;

4. B accepts the signature if c = seA mod nA;

5. B decrypts the message m = cdB mod nB;
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How to Compute φ(n)?

φ(n) is the order of the multiplicative group Z∗n.

If n =
r∏

k=1

p
ek
k , then φ(n) =

r∏
k=1

p
ek−1
k (pk − 1).

1. If n is prime, then φ(n) = n− 1.

2. If n is the product of two primes p · q, then

φ(n) = (p− 1)(q − 1).

How to compute φ(n) without factoring n?

The security of the RSA cryptosystem depends on

the difficulty of factoring n.
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Factorization

In April 1994, an international cooperative group

of mathematicians and computer scientists solved

a 17-year-old challenge problem, the factoring of a

129-digit number, called RSA-129, into two primes.

11438162575788886766923577997614

66120102182967212423625625618429

35706935245733897830597123563958

705058989075147599290026879543541

is the product of

34905295108476509491478496199038

98133417764638493387843990820577

and

32769132993266709549961988190834

461413177642967992942539798288533

by 1600 computers, 8 months, 5000 mips-years.
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Factorization Algorithms

Trial division:

for k = 2,3,5,7, . . . ,
[√

n
]

if k | n then k is a factor of n;

n cannot be the products of “small” primes.
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Factorization Algorithms

In RSA, n is a product of two large distinct primes.

Assume that n = p · q, p < q.

If q − p is too “large”, then p may be too small.

If q − p is too “small”, then

(q + p)2 − (q − p)2 = 4pq = 4n

(q + p)2 = 4n + (q − p)2

Guess the value of q − p,

such that 4n + (q − p)2 a perfect square.

q + p =
√

4n + (q − p)2

Computing square root in R is “easy”.
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Example: n = 221

q − p 4n + (q − p)2 q + p

1 885 29.7489· · ·
2 888 29.7993· · ·
3 893 29.8831· · ·
4 900 30

q − p = 4, q + p = 30,

p = 13, q = 17,

n = 13× 17

The difference of p and q should be “large”.

In particular, n cannot be the square of a

prime.
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Factorization Algorithms

let x =
[√

n
]
, p = x− a, q = x + b

n = (x− a)(x + b)

= x2 + (b− a)x− ab

= x2 + (b− a− 1)x + (x− ab)

x-radix representation n = x2 + αx + β,

(p + q)/2 >
√

pq =
√

n ≥ x

[(x− a) + (x + b)] /2 > x

b− a > 0

If ab ≤ x then

0 ≤ b− a− 1 < x

0 ≤ x− ab < x

If p− q ≤ n1/4, then the values of a and b can be

obtained by solving

b− a− 1 = α

x− ab = β
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An example: n = 187

x =
[√

187
]
= 13

187 = (13)2 + 1(13) + 5

α = 1, β = 5

b− a = 1 + 1

ab = 13− 5

a = 2, b = 4

p = 13− 2 = 11, q = 13 + 4 = 17

n = 11× 17

The difference of p and q should be at least

n1/4.

In other words, if first half of the bits of p and q

are equal, then n can be factorized easily.
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p− 1 Factoring Algorithm

In 1974, Pollard introduced the p− 1 Factorization

Algorithm.

1. Let a be an integer in (1, n− 1).

2. If (a, n) 6= 1 then (a, n) is a factor of n.

3. Otherwise, compute x = am mod n, for some m

which is a multiple of p− 1.

4. d = gcd(x− 1, n) is a factor of n.
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How to compute a multiple of p− 1?

If every prime power factor of p− 1 is bounded by

B, then p− 1 is B-smooth.

Example: 12 = 22 · 3, it is 4-smooth.

Let m =
r∏

i=1

p
αi
i , where

p1, p2, . . . , pr are the primes ≤ B,

αi is the integer such that p
αi
i ≤ B < p

αi+1
i .

If p− 1 is B smooth, then m must be a multiple of

p− 1.
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n = p · q, where p and q are primes.

a ≡ b (mod n), if and only if

a ≡ b (mod p), and
a ≡ b (mod q).

x = am mod n = ak(p−1) mod n

x ≡ ak(p−1) (mod p)

x ≡ 1 (mod p)

p | (x− 1)

x− 1 = kp

compute d = (x− 1, n)

If 1 < d < n then d is a nontrivial factor of n.

It has been shown that, if a is randomly chosen,
the successful rate is 0.5.

p− 1 must contain large prime factors.
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p + 1 Factoring Algorithms

In 1982, Williams introduced the p + 1 Factoring

Algorithm.

Use group generated by the Lucas sequence,

instead of Z∗n.

With proper choice of parameters, the order of the

group is p + 1.

If p + 1 is B-smooth, then n can be factored by the

p + 1 method.

p + 1 must contain large prime factors.
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Lucas Sequence

Given a and b, let α and β be the zeros of

x2 − ax + b.

Lucas sequence is defined by

uk = (αk − βk)/(α− β)

vk = (αk + βk)

Theorem 1 (Lehmer 1978) If p is an odd prime

and p 6 | b then

uk(p−γ) ≡ 0 (mod p)

vk(p−γ) ≡ 2bk(1−γ) (mod p)

where γ =

(
a2 − 4b

p

)
.

Legendre symbol(
x

p

)
=


0 if x ≡ 0 (mod p)

1 if x is a quadratic residue modulo p

−1 otherwise.

(
x

p

)
≡ x(p−1)/2 (mod p)
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Elliptic Curves

Assume that Fp is a field whose characteristic is
not equal to 2 or 3.

An elliptic Curves over Fp is define by the
Weierstrass equation

y2 = x3 + ax + b,

where a, b ∈ Fp, and 4a3 + 27b2 6= 0.

Ea,b(Fp)
= {(x, y, z) ∈ P2(Fp) | y2z = x3 + axz2 + bz3}

The projective plan P2(Fp) over Fp consists of the
equivalence classes of (x, y, z) ∈ Fp × Fp × Fp, where
(x, y, z) and (cx, cy, cz) are equivalent.

Addition rules:

1. O = (0,1,0) is the zero of the group.
P + O = O + P = P .

2. P = (x1, y2,1), Q = (x2, y2,1), R = (x3, y3, z3)
be the intersections of the curve and a line
then P + Q + R = O.
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Elliptic Curve Factoring Algorithm

In 1985, Hendric and Lenstra invented the Elliptic

curve method for factoring n, by using elliptic

curves “over” Zn.

1. Randomly select a, b ∈ Zn for the Elliptic curve

to be used;

2. Randomly select a point P = (x, y,1) of the

curve;

3. Select a bound B, and compute

m =
r∏

i=1

p
αi
i ,

where pi, i = 1,2, . . . , r, are prime numbers

bounded by B, and αi is the maximum integer

such that p
αi
i is more than B;

4. Attempt to compute mP = P + P + · · ·+ P︸ ︷︷ ︸
m

;
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Elliptic Curves modulo n

Ea,b(Zn)
= {(x, y, z) ∈ P2(Zn) | y2z = x3 + axz2 + bz3}

The following addition algorithm will either find a
factor of n, or compute the “sum” of
P = (x1, y1,1) and Q = (x2, y2,1).

If x1 = x2 and y1 = −y2 then return(O);
If x1 = x2 then

find s, t, s(y1 + y2) + tn = (y1 + y2, n) = d;
if d > 1 then

d is a factor of n; stop;
else

λ = s(3x2
1 + a);

end
else

find s, t, s(x1 − x2) + tn = (x1 − x2, n) = d;
if d > 1 then

d is a factor of n; stop;
else

λ = s(y1 − y2);
end

end
x = λ2 − x1 − x2; y = λ(x− x1) + y1;
return((x,−y,1))
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The order of the group generated by the elliptic

curve Ea,b(Fp) is p + 1− t, where |t| ≤ 2
√

p.

It has been shown that, for any t with |t| ≤ 2
√

p,

there is an elliptic curve Ea.b(Fp) with order

p + 1− t.

If p + 1− t is B-smooth, then n can be factored by

the elliptic curve method.

By using different elliptic curves, the factorization

can be done in “parallel”.
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Strong Primes and Strong Keys

Strong prime

1. p is large.

2. The largest prime factor of p− 1 is large.

3. The largest prime factor of p + 1 is large.

4. . . .

Strong key

1. The difference of p and q is large.

2. The ratio, p/q, is not close to a/b, for some

“small” integers a and b.

3. . . .
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Are strong primes needed for RSA?

Are there strong primes for RSA?

Is RSA secure?

The only way to ensure the security of the

RSA cryptosystem is to increase the size of

n.

According to the estimate of Silverman and

Wagstaff, using 1000000000000 MIPS R10000

computers, running for 37500000000 years could

have only 0.63 chance to factor 1024-bit integer.
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Computational Complexity of the Factoring

Algorithms

Ln[ν, λ] = exp
(
λ(logn)ν(log logn)1−ν

)

Ln[1, λ] = nλ, Ln[0, λ] = (logn)λ

log logLn[ν, λ]

= (ν) log logLn[1, λ] + (1− ν) log logLn[0, λ]

The most important parameter is ν.

trial division: Ln[1, λ]
elliptic curve method: Ln[1/2,1]
quadratic sieve: Ln[1/2,1]
number field sieve: Ln[1/3, λ]
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Sieve Factoring Algorithms

Factoring Algorithms whose running time depends

mainly on the size of n, e.g., quadratic sieve,

special number field sieve, general number field

sieve, ...

1. find x and y such that x 6≡ ±y (mod n) and

x2 ≡ y2 (mod n);

2. compute d = (x− y, n);

if 1 < d < n then d is a nontrivial factor of n;

x 6≡ ±y (mod n) ⇒ n 6 | (x− y) and n 6 | (x + y)

x2 ≡ y2 (mod n) ⇒ n | (x2 − y2) ⇒
n | (x− y)(x + y)
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Find Congruent Squares

How to find x and y such that x2 ≡ y2 (mod n)?

1. choose a set of primes B = {p1, p2, . . . , pr}.

2. find a set of x in Zn such that x2 mod n can be

factored by using primes in B,

C = {x | x2 ≡
r∏

i=1

p
ei
i (mod n)}

3. select a subset S of C such that∏
x∈S

x2 ≡
r∏

i=1

p
βi
i (mod n)

where each βi is even.

For a randomly chosen pair x and y satisfying

x2 ≡ y2 (mod n), at least half of them will also

satisfy x 6≡ ±y (mod n).
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An Example: Quadratic Sieve

n = 33221, B = {2,3,5,7}

xi =
[√

33221
]
+ i = 182 + i.

(189)2 ≡ 2500 ≡ (2)2(5)4

(378)2 ≡ 10000 ≡ (2)4(5)4

(409)2 ≡ 1176 ≡ (2)3(3)1(7)2

(567)2 ≡ 22500 ≡ (2)2(3)2(5)4

(682)2 ≡ 30 ≡ (2)1(3)1(5)1

(802)2 ≡ 12005 ≡ (5)1(7)4

(818)2 ≡ 4704 ≡ (2)5(3)1(7)2

(835)2 ≡ 32805 ≡ (3)8(5)1

(845)2 ≡ 16384 ≡ (2)14
(983)2 ≡ 2880 ≡ (2)6(3)2(5)1

(1169)2 ≡ 4500 ≡ (2)2(3)2(5)3

(1223)2 ≡ 784 ≡ (2)4(7)2

(1227)2 ≡ 10584 ≡ (2)3(3)3(7)2

(1327)2 ≡ 216 ≡ (2)3(3)3

(1364)2 ≡ 120 ≡ (2)3(3)1(5)1

(1568)2 ≡ 270 ≡ (2)1(3)3(5)1

(1589)2 ≡ 125 ≡ (5)3
...
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An Example: Quadratic Sieve

1892 ≡ 2254

1892 ≡ 2254 ≡ 502

1892 − 502 ≡ 0 mod 33221

(189− 50)(189 + 50) ≡ 0 mod 33221

(139)(239) = k(33221)

33221 = 139× 239

8022 ≡ 5174

8352 ≡ 3851

(802 · 835)2 ≡ (34 · 5 · 72)2

(669670)≡(19845)2

(5250)2 ≡ (19845)2

(5250− 19845)(5250 + 19845) = k · 33221

(−14595)(20595) = k · 33221

(−14595,33221) = 139

(20595,33221) = 239
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4092 ≡ 233172

6822 ≡ 213151

8352 ≡ 3851

(409 · 682 · 835)2 ≡ (22 · 35 · 5 · 7)2

(232913230)2 ≡ (34020)2

(799)2 ≡ (799)2
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The first phase of the sieve algorithm is to find a

set of x in Zn such that x2 mod n can be factored

by using primes in B = {p1, p2, . . . , pr},

C = {x | x2 ≡
r∏

i=1

p
ei
i (mod n)}

Each x ∈ C can be represented by a vector in Zr
2,

(b1, b2, . . . , br), where each bi = ei mod 2.

Supposed that we have collected more then r such

x’s in C.

The second phase is to find a pair of congruent

squares modulo n, i.e., x2 ≡ y2 (mod n).
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Let V be the set of vectors constructed from each

element in C.

Since |V | = |C| > |B|, vectors in V cannot be all

linearly independent.

Therefore, we can select a subset S ⊆ C such that

the sum of the corresponding vectors in Zr
2 is zero.

Hence, ∏
x∈S

x2 ≡
r∏

i=1

p
βi
i (mod n)

where each βi is even.

The first phase involves searching for “smooth”

integers.

The second phase combines these integers into

two congruent squares.

This can be done by solving a large systems of

linear equations.
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Multiple Polynomial Quadratic Sieve

In searching for the smooth integers,

quadratic sieve:

f(t) =
(
t +

[√
n
])2

, t = 1,2, . . ..

multiple polynomial quadratic sieve:

f(t) = (at + b)2, t = 1,2, . . .,

where |b| ≤ a/2 and b2 ≡ n (mod a).

In April 1994, a version of multiple polynomial

quadratic sieve was used by Arjen Lenstra and

Derek Atkins to factor the RSA-129, a 129-digit

number that had been given in 1977 by the

inventors of the RSA cryptosystem.
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Number Field Sieve

Number field sieve is considered to be the most

efficient factoring algorithm for “large” integers

(120+ digits).

It was first invented by Pollard to factor integers of

the special form n = re + s with small r and |s|.

Lenstra, Lenstra, Jr., Manasse, Pollard, Buhler,

Pomerance, et al. generalized it to factor any

integers.

The basic principle of number field sieve is the

same for quadratic sieve, namely to find two

congruent squares modulo n.

The difference is that, in number field sieve, the

squares are formed not only from combining

smooth rational integers, but also by combining

smooth algebraic integers from carefully chosen

algebraic number field.

35



Algebraic Numbers

Let Z[x] be the set of all polynomials with integer

coefficients.

A number z is algebraic if it is a root of a

polynomial P (x) ∈ Z[x].

Assume that the polynomial P (x) is irreducible

over the rationals. The root z of P (x) generates

an algebraic number field,

Q(z) =


n−1∑
i=0

aiz
i | ai ∈ Q


x = a0 + a1z + . . . + an−1zn−1 is rational if x = a0,

otherwise, it is irrational.

x = a0 + a1z + . . . + an−1zn−1 is an integer if x is a

root of a monic polynomial in Z[x].
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An Example: Quadratic Fields

The quadratic polynomial x2 −D has roots ±
√

D.

√
D generates a quadratic field Q(

√
D)

The elements of Q(
√

D) can be represented by

z = a + b
√

D.

1. (a + b
√

D) + (c + d
√

D) = (a + c) + (b + d)
√

D

2. (a + b
√

D)− (c + d
√

D) = (a− c) + (b− d)
√

D

3. (a+ b
√

D)(c+ d
√

D) = (ac+ bdD)+(ad+ bc)
√

D

4.
a + b

√
D

c + d
√

D
=

(a + b
√

D)(c− d
√

D)

(c + d
√

D)(c− d
√

D)
=

ac− bdD

c2 − d2D
+
(

ad− bc

c2 − d2D

)√
D
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Integer in a Quadratic Field

z is an integer in Q(
√

D) if z2 + bz + c = 0 for some

“rational” integer b and c.

Let z = r + s
√

D be an integer.

(z − r)2 = s2D, thus z is a root of the equation:

z2 − 2rz + r2 − s2D

z is an integer iff −2r ∈ Z and r2 − s2D ∈ Z.

z is an integer iff


z = r + s

√
D, if D ≡ 2 or 3 mod 4

z = r + s
−1 +

√
D

2
, if D ≡ 1 mod 4

38



Conjugate Numbers

Let z1, z2, . . . , zn be the roots of Pn(x) ∈ Z[x] of

degree n. The numbers z1, z2, . . . zn are called

conjugate numbers.

The norm of z = z1 is

N(z) =
n∏

i=1

zi = (−1)nd0/dn

1. N(x) is rational.

2. N(x) = 0 iff x = 0.

3. N(x) is integer if x is an algebraic integer.

4. The norm N is multiplicative,

N(xy) = N(x)N(y).
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Unit

x is a unit of Q(z) if N(x) = ±1.

Examples:

There are 4 units in C: ±1, ±i.

There are 6 units in Q(
√
−3): ±1, ±

−1±
√
−3

2
.

There are infinite number of units in Q(
√

2):

(1 +
√

2)n, n = 1,2, . . .
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Associate Numbers

x and y are associated numbers if
x

y
is a unit of

Q(z).

Examples:

Z: x and −x

C: 2 + 3i and −3 + 2i

Q(
√

2): 5 +
√

2 and 11− 7
√

2
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Divisibilty, Primes, and Composites

Let Z(z) be the ring of integers in Q(z),

a, b, c ∈ Z(z).

a | b, if b = ac for some c ∈ Z(z).

If a | b, then N(a) | N(b).

If a = bc and both b and c are not units, then a is

composite, otherwise a is prime.

Primes in C:

1. 1 + i, 2± i, 3± 2i, 4± i,... i.e., all the factor

a± bi of p = a2 + b2, where p = 2 or p is a

prime of the form 4k + 1.

2. 3, 7, 11, 19,... i.e., primes of the form 4k − 1.

3. The associate numbers of the above.
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Factorization

Every integers z ∈ Q(
√

D) can be factored into the

product of the primes and the units.

For quadratic fields, if D = −163, -67, -43, -19,

-11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21,

29, 33, 37, 41, 57, and 73, then the factorization

is unique in Q(
√

D).

The nagative values of D mentioned above are the

only fileds for which the factorization is unique.
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Number Field Sieve

1. Construct an algebraic number field Q(z).

2. Find a nonempty set S of pairs (a, b) of relative

prime integers such that: ∏
(a,b)∈S

a + bm

 = x2 for some x ∈ Zn

 ∏
(a,b)∈S

a + bz

 = y2 for some y ∈ Q(z)

3. Compute a factor of n.
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Let f(x) be the polynominal of degree d selected

to construct the field Q(z).

m: f(m) ≡ 0 (mod n).

Let Z(z) be the ring of integers in Q(z).

There is a ring homomorphism φ : Z(z) → Zn,

φ(z) = (m mod n).

φ

d−1∑
i=0

aiz
i

 =

d−1∑
i=0

aim
i mod n

 .

φ(y2) =
∏

(a,b)∈S

φ(a + bz) =
∏

(a,b)∈S

a + bm = x2 mod n.
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Find f(x), and m

1. select a degree d, 2d2
< n.

2. let m =
[
n1/d

]
.

3. write n =
d∑

i=0

cim
i, 0 ≤ ci < m.

4. f(x) =
d∑

i=0

cix
i.

1. cd = 1, cd−1 ≤ d.

2. |∆(f)| < d2dn2−3/d, where ∆ is the discriminant

of f .
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Compute S

1. construct a factor basis B1 for Zn.

2. construct a factor basis B2 for Q(z).

3. select a range u, and let

U = {(a, b) | gcd(a, b) = 1, |a| ≤ u, 0 < b ≤ u}.

4. find a subset T = {(a, b) ∈ U |
a + bm is b1-smooth and a + bz is b2-smooth}.

5. find a subset S = {(a, b) ∈ T} such that the

sum of each exponent is even.
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An Example

n = 1333, d = 3,

m =
[
n1/d

]
=
[
13331/3

]
= [11.00550...] = 11

1333 = 113 + 2, f(x) = x3 + 2, 3√−2 is a root of

f(x) = 0.

factorization is unique in Q( 3√−2).

units are: (1 + 3√−2)k, k = 1,2, . . .

B1 = {−1,2,3,5,7}, B2 = {−1, U, A, B, C, D, E, F},
where

U = [1,1,0], A = [0,1,0], B = [−1,1,0],

C = [1,0,1], D = [1,1,−1], E = [1,−2,0],

F = [3,0,−1]
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T =

(a, b) −1 2 3 5 7 −1 U A B C D E F
(−7,1) 0 2 0 0 0 0 0 0 1 1 0 0 1
(−4,1) 0 0 0 0 1 0 0 1 1 0 1 0 0
(−1,1) 0 1 0 1 0 0 0 0 1 0 0 0 0
(−1,3) 0 5 0 1 0 0 0 0 0 1 1 0 0
(1,−2) 1 0 1 0 1 0 0 0 0 0 0 1 0
(2,3) 0 0 0 1 1 0 0 1 0 0 0 0 1
(5,4) 0 0 0 0 2 1 3 0 1 0 0 0 0
(7,3) 0 3 0 1 0 1 1 0 0 0 0 2 0

S = {(−1,1), (5,4), (7,3)}

∏
(a,b)∈S

a + bm = 2 · 5 · 72 · 23 · 5 = (22 · 5 · 7)2 = 1402

∏
(a,b)∈S

a + bz = (U2 · [−1,1,0] · [1,−2,0])2 = [1,5,3]2

φ([1,5,3]2) = (φ()[1,5,3])2 =

(1 + (5)11 + (3)112])2 = 4192

1402 ≡ 4192 mod 1333

d = gcd(419− 140,1333) = 31 is a factor of 1333
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